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ABSTRACT 

Improving the performance of a missile weapon system is a consistently sought-

after goal. A common method to accomplish this is to use a more efficient physical

design. This thesis explores a proof-of-concept solution to the problem by improving 

guidance laws through the application of optimal control theory to enhance its 

performance. 

A modified 3-degrees of freedom (3-DOF) model of a tactical missile was 

developed using common methods for estimating aerodynamic properties. Once the 3-

DOF model problem was properly formulated with relevant cost functions and boundary 

conditions, Pontryagin’s principle on optimal control was then applied to develop the 

necessary Boundary Value Problem that can be used to find the optimal guidance 

solution. The derived solution was then applied to another 3-DOF model with an 

improved fidelity of aerodynamic properties to show the potential of real-time optimal 

control (RTOC).  

The resulting miss distance was used to assess update rate requirements for real-

time, optimal mid-course guidance. Finally, the conservation of kinetic energy over the 

course of flight was used to compare RTOC performance to that of traditional 

proportional navigation control laws and demonstrate the potential of RTOC.  
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I. INTRODUCTION 

The history of missile guidance can be traced back to World War II with the 

Germans conducting research into proportional navigation to aide in engaging moving 

targets [1]. However, it was not until after the end of the war when the post-war scientists 

migrated to the Unites States that the research was complete. This resulted in the 

development of the Lark weapon system, and the first successful intercept by a missile on 

December 2, 1950 [1].  

Since the initial Lark’s success, a significant amount of effort has been put into 

further developing missile guidance, focused on improving how the proportional 

guidance was implemented. Some of these methods include utilizing gain scheduling 

which takes a pre-determined series of gains for different system parameters [2], while 

other methods use the power of machine learning to teach the system to be able to 

calculate the necessary gains during flight [2]. Further still, Linear Quadratic optimal 

control is used to derive the optimal impact angle, but still employs a form of 

proportional feedback [2]. 

 This thesis will explore another method for solving the missile guidance problem 

that employs a form of feedback loop other than proportional gain. Unlike the other 

methods, Pontryagin’s principle for optimal control does not require any sort of feedback 

to generate the control input. Instead, it produces the control for the entire time of 

maneuver that is needed to minimize the specified cost function. This is, however, not 

without shortcomings. If the dynamics used to solve the optimal control problem are not 

accurate, or less complex than the actual conditions then the calculated solution may not 

provide a workable solution. This is where real-time optimal control (RTOC) can be used 

to create a “feedback” loop and solves the model uncertainty issue by periodically 

solving the optimal control problem throughout the flight of the missile. This thesis 

explores applying RTOC to a hypothetical missile. The optimal control is developed 

using estimated aerodynamic coefficients and is simulated with more robust coefficients. 

The process is then finalized by comparing the results versus a traditional proportional 

navigation control law. 
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Chapter II develops the mathematical model used for solving the optimal control 

problem. First the ideas of reference frames and orientations are introduced and applied 

to the problem. After establishing the required rotations, the dynamics are then 

introduced with much help from Kevin Bolino’s dissertation [3] on “High-Fidelity Real-

Time Trajectory Optimization for Reusable Launch Vehicles.” The chapter is finished by 

introducing a non-standard 3-degree of freedom (3-DOF) model derived from Bolino’s 6-

degree of freedom (6-DOF) model. 

Chapter III takes on the challenge of estimating the aerodynamics coefficients of a 

generic missile. An AIM-120 missile is used as a reference body and the physical 

characteristics are obtained from open source references and extrapolated to fill in the 

data gaps. Missile DATCOM is then introduced, which is used with the physical 

characteristics to estimate what the coefficients might be. The concept of high-fidelity vs. 

low-fidelity models is then introduced and how they will be applied to the problem at 

hand. 

Chapter IV introduces the optimal control problem. First, Pontryagin’s principle 

of optimal control is introduced and its applicability to our problem described. The 

principle is then applied, step by step, to the maximum distance problem. The associated 

boundary value problem (BVP) is developed. Finally, the program DIDO is introduced 

which is used to solve the resulting BVP after scaling and balancing the problem. 

Chapter V introduces a basic implementation of the proportional navigation by 

defining the calculations used to develop the control law. The generated acceleration 

from the proportional navigation control law is then converted to the controls used by the 

model. 

Chapter VI finalizes the entire process by simulating the results. Solutions derived 

by DIDO are checked through a series of verifications and validations (V&V). Expected 

co-states and Hamiltonian values are verified and the same model used to compute the 

solution is propagated. Once the V&V has been conducted, the control is then fed into the 

high-fidelity model that implements a real-time optimal control feedback loop. Some 

conclusions, research and suggestions for future work are given in Chapter VII.  
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II. DYNAMIC MODELS 

Before work on any problem can be done, the problem must first be defined. This 

chapter intends to do that. The chapter begins with defining the reference frames and 

coordinates that will be employed by the model, and the rotations between them. With the 

rotations established the 6- DOF dynamics are then introduced. The 6-DOF model is then 

reduced to a non-standard 3-DOF model that will be used to develop the optimal control 

for this thesis and simulations using MathWorks’ Simulink.  

A. REFERENCE FRAMES 

The first step in developing an aerodynamic model, or any model for that matter, 

is to define the reference frames and coordinate systems that will be used. In the case of a 

generic missile, a body and an inertial frame are needed to describe the motion of the 

missile.  

First, the body frame is attached to the center of gravity (c.g.) of the missile’s 

body, which is later calculated in Chapter III, Section A. With the frame attached to the 

c.g. the coordinate system is defined by using the right-hand rule, aligning the X-axis 

along the centerline of the missile, pointing from the c.g. towards the nose of the missile. 

Because missiles are typically symmetric about their centerline, the direction of the Z and 

Y-axis can be arbitrary. However, to ensure that when the moments of inertia, MOI, 

matrix will be diagonal in the body frame, the Z-axis is chosen to be in line with the fin 

and wing groups 1 and 3, pointing from the c.g. to 3, and the Y-axis in line with the fin 

and wing groups 2 and 4, pointing from the c.g. to 2. Figure 1 provides a visual of the 

body frame and coordinates. 
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Figure 1. X-Z Plane View of Body Frame Attached to Missile Body  

With the body frame and coordinates defined, the next frame to define is the 

inertial. The inertial frame and coordinates are important because they are used to 

describe the motion of the body in physical space and provide a context to the observed 

motion. An inertial frame can be placed anywhere in space, but it needs to make sense in 

the context of the motion and what we as observers care about. For example, although 

choosing the center of the Sun for our inertial frame and coordinates is allowed, it is 

unreasonable in the context of a short-range missile. We simply do not care how far our 

missile travels in relation to the Sun’s core. A more reasonable inertia frame would need 

to be located somewhere on the Earth. 

Because the missile will be traveling a small distance over the surface of the 

Earth, in relation to the Earth itself, the Local-Tangent frame makes the most sense. In 

addition to using the Local-Tangent frame, a flat-Earth approximation will also be used to 

further simplify the problem. The positive Z direction will perpendicular to the tangent-

plane and pointed away from the Earth’s surface, while the X-Y plane will be along the 

tangent-plane, as shown in Figure 2. 



 5 

  

Figure 2. Local-Tangent Inertial Frame and Coordinates 

B. ORIENTATION AND ROTATION 

All the motions of the missile occur in the inertial coordinate system; however, it 

can be easier to calculate the forces and moments acting on the missile in the body frame 

first and then translate the results into the inertial coordinate system. To do this, the 

orientation of the body coordinates need to be described in relation to the inertial 

coordinates and vice versa. One method for doing this is to use a direction cosine matrix 

(DCM). The DCM can be used to describe the expression of one coordinate system with 

respect to another or the orientation of an object within a single coordinate system. 

A DCM can be developed by considering a sequence of rotations about the axes 

[X,Y,Z] with [ , , ]   being the amount of rotation for each axis [3]. 

 

1 0 0

0 cos sin

0 sin cos

xR  

 

 
 

  
  

 , (eq. 1) 

 

 

cos 0 sin

0 1 0

sin 0 cos

yR

 

 

 
 

  
 
 

 , (eq. 2) 
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cos sin 0

sin cos 0

0 0 1

zR

 

 

 
 

  
 
 

 . (eq. 3) 

 

Each rotation that is made is based on the new orientation that the previous 

resulted in. For example, if a set of coordinates are first rotated about the X-axis, then the 

Z-axis, then the first rotation about the X-axis would look like 

 

2 1

2 1

2 1

x

X X

Y R Y

Z Z

   
   


   
      

 . (eq. 4) 

The second rotation about the Z-axis would then be 

 

3 2

3 2

3 2

z

X X

Y R Y

Z Z

   
   


   
      

.  (eq. 5) 

Substituting (eq. 4) into (eq. 5) shows that a new DCM can be made by multiplying the 

two rotations together, 

 

3 1 1

3 1 1

3 1 1

z x zx

X X X

Y R R Y R Y

Z Z Z

     
     

 
     
          

.  (eq. 6) 

Using this information, one DCM can be generated by using the standard order of 

rotations of zR , yR , then xR ,     

 
cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

i

o x y zR R R R

    

           

           

 
 

    
   

, (eq. 7) 

where i  is the initial coordinate system and o  is the final coordinate system. 
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Now that a means of expressing one frame in another, an initial orientation 

between the body and inertial coordinates needs to be established. bX  will be in the 

positive direction of eX and bZ  will point in the negative direction of eZ . Figure 3 

demonstrates this orientation. 

 

 

Figure 3. Body (Left) and Inertially (Right) Frame 

Figure 3 also shows that only a rotation about bX ,   , is needed to complete 

the translation, meaning 0    

 

1 0 0

0 1 0

0 0 1

b

eR

 
 

  
  

, (eq. 8) 

where b  represents the body coordinates and e  represents the inertial coordinates. 

 If the missile was only translating along the axes, equation (eq. 8) would be 

enough to express the body in the inertial frame. However, because the missile can also 

rotate, due to aerodynamic drag, within the inertial frame, equation (eq. 8) becomes an 

intermediate step and is relabeled as  
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1 0 0

0 1 0

0 0 1

b

oR

 
 

  
  

.  (eq. 9) 

where o is the intermediate orientation. The next rotation then takes the intermediate 

orientation and expresses that in the inertial frame. This by done by again using equation 

(eq. 7). 

 

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

o

eR

    

           

           

 
 

   
   

. (eq. 10) 

 

To obtain the complete DCM the two rotations are combined using matrix multiplication 

with body rotated to the intermediate orientation first, and then to the inertial frame. 

 

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

b o b

e e oR R R

    

           

           

 
 

      
     

. (eq. 11) 

The DCM to express the body frame in the inertial frame is now available. 

Reversing the process then allows the inertial frame to be then expressed in the body 

frame [3], 

 

cos cos sin sin cos cos sin cos sin cos sin sin

cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos

e

bR

           

           

    

  
 

      
   

. (eq. 12) 

 

C. SIX DEGREES OF FREEDOM MODEL  

When developing the six degree of freedom (6-DOF) model the important 

positions, velocities, and accelerations need to be defined in their respected frames. the 

velocities of the body, in the body coordinates, are represented by  , ,u v w , 
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b

X u

Y v

Z w

   
   

   
     

 . (eq. 13) 

The angular velocities of the body, in the body coordinates, are represented by  , ,p q r , 

 

b

x

y

z

p

q

r







   
   


   
      

 . (eq. 14) 

The position of the missile, in the inertial frame, is represented by  , ,e e eX Y Z , 
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e

e

e

X X

Y Y

Z Z

   
   


   
      

 . (eq. 15) 

The rotation of the missile, in the inertial frame, is represented by  , ,   ,  

 

e
 

 

 

   
   


   
      

.  (eq. 16) 

1. Forces 

As mentioned earlier, it is simpler to calculate the forces and moments in the body 

frame and then convert the resulting velocities from the body to the internal frame [3]. 

With this in mind, the forces acting on the body can be summarized as 

 

X

Y

Z

b

ref g TX

Y ref g

Z ref g

qS CA F FF

F qS CY F

F qS CN F

   
  

   
      

, (eq. 17) 

where q  is known as the dynamic pressure, refS  is the reference area of the body, 

 , ,
T

CA CY CN  are the axial coefficient of drag, side-force coefficient of drag, and 

normal coefficient of drag. Vector [ , , ]T

gx gy gzF F F  represents the force of gravity in the 
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body frame, and TF  is the thrust generated by the missile motor. Because we will be 

focusing on the midcourse phase of flight, which is starts when the motor burns out, 

0TF  .  

The dynamic pressure is obtained by [3] 

 
21

( )
2

eq Z V .  (eq. 18) 

where   is the air density, as defined by the barometric function [4], 

 
0.0001184

1.225 eZ
e 

 .  (eq. 19) 

 and V is 

 

b

X

Y

Z

u W

V v W

w W

 
 

 
 
  

,  (eq. 20) 

where [ , , ]T

X Y ZW W W  are the wind velocities in bF . For this thesis, it is assumed there is 

no wind, [ , , ] 0T

X Y ZW W W  . 

Using equation (eq. 12) the forces of gravity in the body frame can be determined. 

 

0 (cos cos sin sin sin )

0 ( cos sin sin cos sin )

( cos cos )

b e

gx

e

gy b

gz

F mg

F R mg

F mg mg

    

    

 

      
     

         
           

, (eq. 21) 

where m is the mass of the missile and g is the gravitational acceleration. Force can also 

be represented as the time derivative of linear momentum. By representing force as the 

time derivative of linear momentum the influence of the angular rates on the force can be 

seen through the cross product between of the angular rates and the momentum of the 

missile [3]. 

 
( ) ( )

( ) ( )e

d mV mV
F mV

dt t


 


     ,  (eq. 22) 
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where [ , , ]Tp q r   and [ , , ]T

e e e ep q r  . Because this thesis is using the flat earth 

approximation, 0e  . Equation (eq. 22) becomes 

 

( )

( )

( )

b

X

Y

Z

F m u qw rv

F m v ru pw

F m w pv qw

    
   

  
   
       

.  (eq. 23) 

It is now possible to equate equations (eq. 17) and (eq. 23), 

 

( )

( )

( )

ref gx

ref gy

ref gz

qS CA F m u qw rv

qS CY F m v ru pw

qS CN F m w pv qw

    
   

      
       

,  (eq. 24) 

and then solve for V ,  

 

(sin sin cos cos sin )

(cos sin cos sin sin )

cos cos
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m

qS CY
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m
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m

    

    

 

 
      
   
   
       
   
   
      

 

. (eq. 25) 

 

Equation (eq. 25) now provides the accelerations of the body expressed in the body 

coordinates. 

2. Moments 

With the forces obtained, the next step is to find the moments acting on the body 

expressed in the body coordinates. Because the body does not have any irregular mass 

distribution, is short in length, and total flight time relatively short, any gravitational field 

effects can be assumed to be negligible, meaning that only aerodynamics forces are 

considered in the moments acting on the body [3]. 
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  
  

   
     

, (eq. 26) 

where [ , , ]TCl Cm Cn  are the rolling moment coefficient, pitching moment coefficient, and 

the yawing moment coefficient.  

Similar to the forces, the moments can be represented as the time derivative of 

angular momentum, h [3]. 

 
dh h

M h
dt t





    ,  (eq. 27) 

where h  is the matrix-vector product of the moments of inertia and the angular 

velocities, 

 

XX XY XZ

YX YY YZ

ZX ZY ZZ

I I I p

h I I I q

I I I r

    
   

  
   
       

.  (eq. 28) 

If the origin of the body coordinates is chosen to be at the c.g. of the missile and 

the axes are chosen to be so that they align with the principle moments of inertia, which 

is easily done with a missile, then h  becomes [3]  

 

0 0

0 0

0 0

XX XX

YY YY

ZZ ZZ

I p I p

h I q I q

I r I r

     
     

 
     
          

.  (eq. 29) 

The moments expressed in the body frame are then 
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b
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,  (eq. 30) 

and combining equations (eq. 26) and (eq. 30), and solving for [ , , ]p q r  gives  
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.  (eq. 31) 

 

3. Inertial Motion 

Now that the linear and rotational accelerations in the body have been found, the 

next step is to determine how the linear and rotational velocities of the body relate to 

motion in the inertial frame. This is easily done by applying equation (eq. 11) to the 

velocities and angular rates of the body. The velocities in the inertial frame will be 
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 (eq. 32) 

and the angular rates will be 
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. (eq. 33) 

 

4. Putting the 6-DOF Model Together 

Now that the form of each of the components of the 6-DOF model have been 

determined, the 6-DOF model of the missile can be assembled into 
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D. THREE DEGREES OF FREEDOM MODEL 

Typically, when talking about a three degree of freedom (3-DOF) model, this 

implies that only lateral translations, [ , , ]u v w , will be considered. For our purposes, a 

non-standard 3-DOF will be used, [ , , ]u q w . The non-standard model was used because it 

was assumed that the motion of the missile when tracking a stationary target would be 

within a single plane and did not wish to reduce the model to 2-DOF. To obtain the 3-

DOF equations of motion, the “unused” motion, [ , , ]p v r , are set to zero and then applied 

to 6-DOF equations of motion. The resulting equations are then used for the 3-DOF 

model. The results are summarized as 
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 . (eq. 35) 

 

E. SUMMARY 

This chapter covered the development of the dynamics that are used to simulate 

the model. The concepts of frames and coordinates we addressed and then applied to the 

missile body and an inertial reference. Rotations we then developed to be able to express 

motion in one set of coordinates by first building the standard 6-DOF model, and then 

simplifying it to a non-standard 3-DOF model. 
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III. AERODYNAMIC COEFFICIENTS 

To model the dynamics of a missile as accurately as possible the aerodynamic 

coefficients must be determined. Aerodynamic coefficients can be very difficult to 

determine because they depend on many factors such as the shape of body, the material 

of the body, the air density (  ), the angle of attack ( ), sideslip angle (  ), and air 

speed. Because of all these factors, the coefficients are not constant throughout flight. To 

this day, the best method for determining the aerodynamic coefficients would be to place 

an exact mockup of the body into a wind tunnel and test all different configurations. 

While this method is the most accurate, it can be cost and time prohibitive when testing 

various design choices. Another issue with this method, for the purpose of this work, is 

the sensitive nature of the data. 

Some references, such as Zarchan [5] provide a means to calculate an estimate of 

the normal coefficient values, but are only good for a relatively small 𝛼 due to the non-

linear nature of the coefficients. This method can be useful when calculating the optimal 

solution, but a more accurate method is needed for real world comparison and simulation. 

Fortunately, there exists another method. The U.S. Air Force Research Laboratory 

developed a program known as Missile DATCOM. The purpose of Missile DATCOM is 

to provide a means of calculating the aerodynamic coefficients with an accuracy suitable 

for preliminary design [6]. 

A. PHYSICAL CHARACTERISTICS 

Missile DATCOM can take many factors into account when calculating the 

aerodynamic coefficients of a body. It is possible to input the shape and location of the 

different fin sets of a missile, the nose shape and length, the skin material of the missile, 

the altitude of flight, the Mach range to be used, angle of attack, side slip angle, and 

much more. To use Missile DATCOM to calculate the aerodynamics coefficients, the 

first step was to determine the physical parameters of a generic missile. 

The AIM-120C missile was chosen to act as a reference for building the generic 

missile used in the simulation. Using open source information [7], it is possible to come 
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up with a good starting point for determining the dimensions of the missile. Using the 

information in Table 1, a sample image of an AIM-120, as seen in Figure 4, and pixel 

analysis using the image analyzing software ENVI [8], a rough blueprint of the missile 

was constructed (see Figure 5). 

Table 1. AIM-120C Characteristics. Adapted from [7]. 

Length 3.66 m 

Diameter 17.8 cm 

Wingspan 53.3 cm 

Finspan 63.5 cm 

Weight 157 kg 

Max Speed Mach 4 

Max Range 105 km 

Propulsion Hercules/Aerojet Solid-

fueled rocket 

Warhead 18 kg WDU-41 

 

 

Figure 4. AIM-120C. Source: [7]. 

 

Figure 5. Estimated Dimensions of AIM-120 (Dimensions in cm) 
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With the physical dimensions of the missile obtained, the next piece of 

information needed for Missile DATCOM was the location of the center of gravity (c.g.). 

First the missile in Figure 5 is broken down in the following components: 

 Motor 

 Warhead 

 Electronics 

 Cone 

 Fins 

 Wings 

While the location of the wings and fins were already determined earlier, Figure 6 

was used as a way to estimate the location and size of the remaining components. Figure 

7 shows how these components fit into our design. 

 

Figure 6. Reference AIM-120 Internal Components. Source: [8]. 

 

Figure 7. Estimated Layout of AIM-120 Internal Components 

With the components identified and their locations determined, each individual 

c.g. needed to be determined. When determining the body components c.g., two 

assumptions were made. First, the components have uniform density, and second, the 

mass included the skin of the body surrounding the component. First, we know that the 

missile has a total weight of 157 kg [7]. It is also known that the warhead has a mass of 
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18 kg [8]. If the fins and wings are assumed to have a uniform thickness of 6 mm, their 

volume can be calculated. It is assumed that they are made of solid titanium, which has a 

density of 4.5 
3/g cm , the fins and wings have a mass of combined mass of 11 kg and 5 

kg respectively. This leaves 123 kg remaining for the motor, electronics, and cone. 

When determining the mass of the motor, two different mass totals can be 

considered: wet mass and dry mass. To determine the mass of the motor a report by 

Tyrell et al[9]. was consulted. The report first states that open source information on the 

AIM-120 missile shows that the motor has a total mass of 75 kg [9]. The report then goes 

on to use CAD to model the motor and determine the amount of fuel within the motor, 

which they estimated to be 50 kg [9]. This suggests that the wet mass of the missile is 

157 kg and the dry mass is 107 kg. In addition, the report also estimates that the thrust of 

the motor to be around 16772 N [9]. 

At this point it is known that the electronics and cone have a combined mass of 48 

kg and is was decided to combine the two components into one. Table 2 summarizes the 

mass distribution. 

Table 2. Estimated Mass Distribution of AIM-120C 

Component Mass 

Electronics and Cone 48 kg 

Warhead 18 kg 

Fins 11 kg 

Wings 5 kg 

Motor Wet: 75 kg Dry: 25 kg 

Total Wet 157 kg Dry: 107 kg 

 

With the mass distribution known, the c.g. can be calculated. In addition, the 

moments of inertia (MOI) can also be determined, which will be useful later when 

simulating the missile dynamics. First the c.g. is calculated. Because the axes were 

chosen to be on the principle axes of inertia, and the missile is symmetric about the X-

axis, the c.g. of the missile is located somewhere along the X-axis. Each component was 

then assumed to have a uniform density and therefore could be estimated as point-masses, 
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.  (eq. 36) 

Where . .nc g is the center of gravity of each of the components, measured from the 

tail of the missile, nm  is the mass of the corresponding component, and tm  is the total 

mass of the missile for the dry or wet case. The calculated c.g. are found in Table 3. 

Table 3. Estimated Center of Gravity 

Wet 165 cm 

Dry 200 cm 

 

 The MOI for each of the components were calculated and added together using 

the equations given below.  

Along the body’s X-axis, the missile was assumed to be a cylinder and the fins 

and wings were assumed to be a point mass at a distance of 22 cm from the center line. 

 2 21

2
x i i n n

i n

J m r m r   .  (eq. 37)   

Typically, with a missile, the body is symmetric about the X-axis, which means 

the MOI about the Y and Z-axis can be assumed to be same; y zJ J . For these axes, each 

body components’ MOI was calculated as a cylinder. In addition, the parallel axis 

theorem was applied to account for the fact that the components c.g. were not located at 

the c.g of the assembly. The shape of the fins and wings were then estimated as thin 

rectangles, and are subject to the parallel axis theorem as well. 

 2 2 2 2 2 2(3 ) ( )
12 12

i n
y z i i i i n n n n

i n

m m
J J r l m d l h m d        .  (eq. 38) 

  In both (eq. 37) and (eq. 38) i indexes the motor, warhead, and electronic and 

cone sections and n indexes the wings and fins. 

Just like the c.g. a wet and dry MOI were calculated and are summarized in 

Figure 4 
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Table 4. Estimated MOI for the AIM-120C 

Axis Wet ( kg 2m ) Dry ( kg 2m ) 

X 1.333 1.135 

Y 266.4 224.7 

Z 266.4 224.7 

 

With all the necessary information collected, the next phase is to put the data into 

Missile DATCOM and record calculated aerodynamic coefficients. 

B. MISSILE DATCOM 

Using the Missile DATCOM’s user manual [7] as guidance, Missile parameters 

are inputted into the system by using a for005.dat file that can be edited with windows 

notepad. When the program is executed, the for005.dat information is read and any errors 

that may have been found are reported in the for006.dat file along with on the run. 

Missile DATCOM also produces an MS excel file label for042. This file contains the 

calculated coefficients for each of the different case in the for005.dat file. 

To use Missile DATCOM, a series of MATLAB scripts were generated that 

would populate the for005.dat file with the current run parameters, run DATCOM, and 

extract the results from the for042 MS excel. The process was repeated until a matrix of 

the aerodynamic coefficients was generated with the ranges seen in Table 5 

Table 5. Parameter Ranges for Calculating Aerodynamic Coefficients Using 

Missile DATCOM 

Parameter Range 

Mach 0.1 to 4.0 

Angle of attack (  ) -49  to 49  

Fin Deflection (  ) -20  to 20  

Figure 8 shows the orientations that are used by Missile DATCOM when 

calculating the coefficients. 
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Figure 8. Missile DATCOM Orientations. Source: [6]. 

It can be seen that they are not the same as the orientation of our body frame. To 

correct this difference a rotation about the body y-axis was used applied to the 

aerodynamic coefficients calculated by Missile DATCOM, 
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. (eq. 39) 

C. HIGH FIDELITY VS. LOW FIDELITY MODELS 

One of the goals in this thesis is to show what level of model fidelity is required 

for developing a guidance with optimal control theory. The more “perfect” a model, the 

more complexity is required to developing an optimal guidance solution. In addition, it is 

difficult to account for all external disturbances that could possibly affect the real-world 

dynamics. A “good enough” model is one which allows a rapid optimal guidance 
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solution, and which allows RTOC to be applied. In this case there are two different 

models, a low-fidelity model used in developing the control, and a high-fidelity model to 

act as the real-world model. Our Missile DATCOM data will serve nicely as the high-

fidelity model using the 3DOF equations, but the low-fidelity model needs to be 

determined. 

As mentioned earlier, Zarchan provides a model for estimating Cn  andCm  for 

Machs that are greater than supersonic speeds [5]; 

2 21.5 8 8 ( )
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, (eq. 41) 

where cgX  is the location of the center of gravity. The remaining variables are defined by 

2
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, (eq. 42) 

and their corresponding values are obtained by referencing Figure 9 and applying it to the 

missile. 
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Figure 9. Forces on Tail-Controlled Missile. Source: [5]. 

 Figure 10 shows that the values of coefficients derived from Zarchan are 

comparable to those obtain from Missile DATCOM when the angle of attack remains 

within 15 . 
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Figure 10. Comparison of Missile DATCOM and Simplified 

Coefficients 

The axial coefficient (CA) was set to the average value obtained from Missile 

DATCOM, giving a value of 0.406CA  . Note that this will have implications in the 

missile performance: drag is independent of altitude, so there is no advantage in gaining 

altitude, and will have an impact on the optimal solution developed. 

D. FINS DEFLECTION  

For a typical missile, the only form of control comes from fins that are known as 

control surfaces. These fins can be deflected at some angle ( ) to generate aerodynamic 

forces and moments on the body. This is true even during the boost phase because a 

missile typically does not have any control over the thrust direction in the body frame. 

The model in this thesis was simplified to have the control be the angular rate of the 

body’s Y-axis ( q ). This simplification was done because the fin deflections operate at a 

rate much higher than the rest of the missile motion. The significant difference in rates 
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means that extra care is needed when numerically scaling the problem for DIDO to solve 

the boundary value problem. The concept of scaling is discussed later in section IV.B.2. 

Having the control of the system being q  assumes that the AIM-120 would be 

able to obtain those rates directly instead of having to manipulate the rear control surface 

to generate the necessary aerodynamic torque. However, one of the possible inputs to the 

Missile DATCOM tables are the fin deflections. If it is possible to calculate what kind of 

fin deflections that would generate the control, it would improve the model fidelity. 

To solve for the fin deflection, we first reference back to 3-DOF equations found 

in equation (eq. 35), specifically the equation for q , 

 
ref

yy

qS Cm
q

I
 ,  (eq. 43) 

then substituting equation (eq. 41) for Cm  and then solve for  , 

 20.2973 1.147 0.8968
12.107

yy e

e e

ref

qI B
B B

qS
       .  (eq. 44)  

It is now possible to retroactively solve for what the fin deflections might have been, and 

then use that information to feed look-up tables supplying the coefficients for the high-

fidelity model.  

E. SUMMARY 

 This chapter covered the development of the physical characteristics of the 

missile, which were used to determined aerodynamic coefficients using Missile 

DATCOM. A simplified method for determining the coefficients was also introduced to 

act as the lower-fidelity model. The next chapter will address the concept of optimal 

control theory and how it is used to develop the optimal control. 
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IV. OPTIMAL CONTROL THEORY 

Pontryagin’s principle on optimal control had its origins with his maximum 

principle [10]. Pontryagin’s principle employed on an optimal control problem is to 

develop a boundary value problem, BVP, that, when solved, will provide the best, or 

optimal solution to the problem. 

A. PROBLEM FORMULATION 

The first step in solving the optimal control problem is to define the problem to be 

solved. As addressed earlier, the 3-DOF model is the basis of the guidance problem. This 

means that the states of the model will be [ , , , , ]T

e ex X Z u w  . In addition, the control 

for the model will be defined as [ ]q  . It is important to note that the standard notation 

for the control input is u. In this thesis   is used to avoid confusion with the state 

variable u.  

With the states defined, path constraints need to be developed and placed upon the 

trajectory. A path constraint is a function of the states and control of the system and is 

denoted by h. Upper and lower limits are placed on h, resulting in 

  (.), (.)lowerbound upperboundh h x h  .  (eq. 45) 

 The first path constraint will be placed upon the angle of attack ( ) , limiting it 

between 15 . This path constraint was chosen because when  exceeds 15  Zarchan’s 

approximation, (eq. 40) begins to diverge from the Missile DATCOM calculated 

aerodynamic coefficients. 

Another constraint was placed upon the control to ensure that the control 

generated was one that the system would theoretically produce. In our model the control 

is the pitch rate. In reality, the controls for a missile in the midcourse phase are the 

deflections of the control surfaces, which produces a pitch acceleration, 
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( , , , )e

y

qCm u w Z
q

I


 .  (eq. 46) 

Solving for aerodynamic coefficient, 

 
yI q

Cm
q

 ,  (eq. 47) 

it is possible to determine what value the aerodynamic coefficient needs to be to produce 

the desired pitch acceleration. The model was then allowed to be able to accelerate from 

the minimum pitch rate to the maximum pitch rate in 0.1 seconds, giving 

 max min( )

0.1

q q
q


 .  (eq. 48) 

If the pitch rate was bounded between 1.1  radians/s ( 63 / s ), at a height of 2000 

meters, and velocity of 200 m/s the missile would then need to produce an aerodynamic 

coefficient of 13.96. Scanning through the calculated Cm from Missile DATCOM, at the 

velocity used and within the  bound, it is found that Cm of up to 23.18 is possible. 

The path constraints are summarized as 

 
1

2

15 ( ) 15

63 / s ( ) 63 / s

h

h q

  

  
.  (eq. 49) 

Next, the cost function and accompanying initial and final conditions need to be 

defined. The cost function is used to define the state(s) that affect the cost of the 

maneuver that is being performed by the system and is generally something that is 

minimized. It is defined as  

 [ (.), (.), ] ( ( ), ) ( ( ), ( ), )
f

o

t

f f f
t

J x t E x t t F x t t t dt    ,  (eq. 50) 

where ( ( ), )f fE x t t  is the endpoint cost and ( ( ), ( ), )F x t t t is the running cost. 

 The initial and final conditions can be either fixed or free, depending on the 

specific problem being considered. Throughout this thesis, three different cost functions 
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will be examined. For these cost functions, one set of initial conditions will satisfy the 

needs of all three cost functions. The initial conditions will be chosen to be

( ) [0,2500 ,1528 ,0, ]i i

m
x t m

s
 . A starting height of 2,500m was chosen as some height 

below the maximum cited ceiling for an F/A-18 Hornet, which is 15,240m [11]. The 

value 1528
m

s
 is roughly Mach 4, for a height of 2000m. Mach 4 was chosen because it is 

the cited max speed of the AIM-120 [8]. The initial rotation of the body in the inertial 

frame, i  was left free. 

The final conditions will be unique for each cost function. The first cost function 

will be to maximize the horizontal distance traveled, 
1[ (.), (.), ] f

f eJ x t X   . This cost 

function will be applied first the problem and using its solution as the frame work for the 

next two cost functions. For this cost function, a final condition of 

1( ) [ ,2000 ,200 ,0, ]f

f e f

m
x t X m

s
  was chosen. The final distance,

f

eX , is left open 

because it is the state that is being maximized. A final height of 2000 m was chosen just 

to be some height below the initial height. The final velocities were chosen by first 

setting 200 m/s as the minimum speed needed for a missile to be “capable” of hitting a 

target at the end of the mid-course phase. Second, all of the speed was desired to be in the 

direction the missile is pointed, 0 , 200f f

m m
w u

s s
  . The final rotation of the missile,

f , was then left free for the optimal control theory to determine. 

The next cost function minimizes the final flight time, 2[ (.), (.), ]f fJ x t t  . The 

final conditions will be 
max

2

2
( ) [ ,2000 ,200 ,0, ]

3f e f

m
x t X m

s
 , where 

max

eX  is the 

maximum distance obtained from the first cost function. This cost function is used to 

create a form of comparison for the results of the final cost function.  

The last cost functions to be used will maximize the final kinetic energy by 

maximizing the final value of fu , 3[ (.), (.), ]f fJ x t u   . This cost function will be used 

to ultimately determine what the optimal trajectory would be for the missile. The 
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accompanying final conditions will then be 
max

3

2
( ) [ ,2000 , ,0, ]

3f e f fx t X m u  . max

eX  is 

the same value as in 2 ( )fx t . 

 

 

The final problem will then be 
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.  (eq. 51) 
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1. Derivation of the Necessary Conditions 

Now that the problems have been formulated, it is possible to walk through the 

steps of the applying Pontryagin’s principle of optimal control. We will first apply it to 

the problem set one. 

a. Hamiltonian 

The Hamiltonian is defined as [10] 

 ( , , , ) ( , , ) ( , , )TH x t F x t f x t      .  (eq. 52) 

 

Consulting the cost function for the problem we find that there is no running cost, 

therefore, ( , , ) 0F x u t  . This leaves the Hamiltonian as a product of the co-vectors and 

dynamics, 

 ( , , , ) ( , , )TH x t f x t    .  (eq. 53) 

The Hamiltonian has the units of 
cost-unit

time-unit
[10]. Note that state units cannot be 

added together to equal the cost-unit. This is where the co-vectors come in. The co-

vectors, [ , , , , ]
e e

T

X Z u w       , have the units of 
cost-unit

state-unit
[10], where the state-unit 

corresponds to the co-vector’s matching state. For example, 
eX  has the units of 

cost-unit

meters
, this is because its corresponding state, eX , is measured with the units of 

meters. What this means is that as a result of the dot product between the co-vectors and 

dynamics, the Hamiltonian will have the units of 
cost-unit

time-unit
[10]. The Hamiltonian of the 

system is now 

 

( , , , ) ( cos sin ) ( sin cos ) ( sin )

( cos ) ( )

e e

u
X Z u

w
w

F
H x u t u w u w qw g

m

F
qu g q

m 

        

  

      

    

. (eq. 54) 
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 Next the Lagrangian of the Hamiltonian is established as  

 ( , , , ) ( , , , ) TH x t H x t l h     .  (eq. 55) 

The Lagrangian of the Hamiltonian is important because it resolves issues when finding a 

local minimum created by the path constraints, h . This will be explained with more 

detail in the next section when the Hamiltonian is minimized. The symbol l , known as 

the Karush-Kuhn-Tucker multipliers (KKT), in this scenario is used in the same way that 

the co-vectors for the dynamics. In fact, they are co-vectors for the path constraints [10]. 

It is important to note that the standard notation for the KKT multipliers is   and was 

changed to avoid confusion with the control,  . The Lagrangian of the Hamiltonian can 

then be written as 

 

1 1 2 2

( , , , ) ( cos sin ) ( sin cos )

( , , , ) ( , , , )
( sin ) ( cos )

( ) ( ) ( )

e eX Z

u e w e
u w

H x t u w u w

F u w Z F u w Z
qw g qu g

m m

q l h l h q

       

 
   

 

   

     

   

.  (eq. 56)  

 To minimize the Lagrangian of the Hamiltonian first the complementarity 

condition [10] must be met,  

 

min

min max

max

0

0

0

i

i i

i

if h h

l if h h h

if h h

 

  
 

.  (eq. 57) 

This means that if the scenario never hits the path constraints the KKT multipliers will 

remain zero, and the Lagrangian of the Hamiltonian will be equivalent to the 

Hamiltonian. Note, the complementarity condition does not prevent the system from 

reaching the path constraints or even “ride” them for a time. Applied to the problem, the 

complementarity conditions are  
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.  (eq. 58) 

b. Minimizing the Hamiltonian 

The intent of this process is to find the lowest cost, J, of the problem formulated. 

This means finding the control that produces the smallest change in cost over time, for all 

time, will result in the lowest overall cost. Remembering that the Hamiltonian is 

cost-unit

time-unit
, then finding the minimum of the Hamiltonian with respect to the control will 

result in the lowest overall cost for the maneuver. Figure 11 helps demonstrate this point.  

 

 

Figure 11. Hypothetical Hamiltonian vs. Control. Adapted from [10] 

The local candidate minimums can then be identified when 

 0
H







.  (eq. 59) 
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Equation (eq. 59) is known as minimizing the Hamiltonian. This, however, is only 

part of the story, because in Figure 11 the control,  , does not have any bounds placed 

upon it equation (eq. 59) is enough to capture all possible solutions. But if the control 

does have bounds placed upon it, such as a path constraint, then equation (eq. 59) is not 

sufficient [10]. This is seen in Figure 12. 

 

Figure 12. Hypothetical Hamiltonian vs. Control w/ Bounds. 

Adapted from [10]. 

If only the points where the slope is zero are taken as possible solutions, then the 

actual solution, located at the control’s minimum, will be missed. This is where the 

Lagrangian of the Hamiltonian comes in. Because the Lagrangian considers path 

constraints, it can be used to solve for the solution. This also brings up another condition 

for minimizing the Lagrangian, the stationarity condition [10], which is defined as 

0
H







.  (eq. 60) 

Applying this to our problem, 

 
2
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T

u w

H H l h
w u l
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  
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  
.  (eq. 61) 
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Referring to equation (eq. 58) it can be seen that as long as the control is not 

located at the bounds, 2l  will be zero and minimizing the Lagrangian of the Hamiltonian 

becomes equivalent to minimizing the Hamiltonian, 

 0 u w

H H
w u

q   


 
     

 
.  (eq. 62) 

c. Adjoints 

With the Lagrangian of the Hamiltonian minimized, the next step is to find the 

adjoints. In solving the optimal control problem, the values of the co-vectors ultimately 

need to be determined. To do this we must first determine what the dynamics of the co-

vectors are. This is where the adjoints come in. To solve for the adjoints [10] 

 x

H

x



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
.  (eq. 63) 

Applying this to each state of the problem yields 
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       cos sinu wg g   

. (eq. 64) 

One immediate take away that we can see is that 
eX  is a constant, which will be 

an important means of validation and verification later when the optimal control problem 

is solved. Next, we then need to calculate the partials derivative of the forces with respect 

to each state, 
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 . (eq. 65) 

Combining equations (eq. 64) and (eq. 65) the adjoints for the problem are 

obtained, 
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. (eq. 66) 

d. Transversality 

Now that the dynamics of the co-states have been determined, that last step before 

constructing the boundary value problem is to solve for the transversality conditions. The 

transversality equation is found by using the endpoint Lagrangian [10], 

 ( ( ), ) ( ( ), ) ( , )T

f f f f f fE x t t E x t t e x t  .  (eq. 67) 
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The equation ( ( ), )f fE x t t  is found by referring to equation (eq. 50) and the cost function 

chosen for the problem. ( ( ), )f fe x t t  is obtained by the endpoint conditions established in 

the problem formulation, 

 

( ) 2000
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( ) 0

e f
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w t
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  
  

.  (eq. 68) 

Where the vector   is another set of co-vectors,  1 2 3, ,   . This results in  

 
1 2 3( ( ), ) ( 2000) ( 200) ( 0)

f ff f e e f fE x t t X Z u w          .  (eq. 69) 

With the endpoint Lagrangian, it is then might be possible to determine some of 

the   co-vector final time values [10], 
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
.  (eq. 70) 

The endpoint Lagrangian may not provide the final time value for all the   co-vectors, 

nor is it guaranteed to provide any at all. When applied to the current problem 
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In this problem, the only useful information that comes from solving the 

transversality is that the ( ) 1
eX ft   . This is because the value of 

feX  is not specified 

and is the cost of the problem. Coupled with the knowledge that 0
eX   we also know 

that 0( ) 1
eX t   . In this problem, the endpoint Lagrangian turned out to be useful. 
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2. Constructing BVP 

Now that we have completed all the supporting steps, the final phase is the put the 

BVP together 
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. (eq. 72) 

To solve a set of BVP of N equations, N point conditions are also needed [10]. In 

addition to the N point conditions initial and final propagating times are also needed, 

meaning a total of N+2 point conditions are required to the solve the BVP developed in 
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the optimal control problem. Looking at equation (eq. 72) we can see that we have ten 

equations, with ten known point conditions, meaning that we are missing 2 point 

conditions. If referring to equation (eq. 61) it is possible to obtain the two missing point 

conditions. When solving equation (eq. 61) for w  

 2u
w

w l

u
 


 

 .  (eq. 73) 

And then solve (eq. 73) at time ot  and ft ,  
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This then provides the last point conditions. 

  

B. SOLVING THE BOUNDARY VALUE PROBLEM 

Now that the BVP has been developed, it needs to be solved. The methods to 

solve a BVP vary quite significantly and are a field of study all their own. Some methods 

include using a fixed-point iteration, where a possible solution is guessed at, and the 

refined with each iteration. The problem with this method is that it requires a good initial 

guess at what the solution would be, otherwise the method may never converge on the 

solution. Many other types of methods and programs are available to help in solving 

these types of problems. For this research, the program DIDO [10] was employed.  

1. DIDO 

DIDO is unique in that it is designed to specifically solve BVPs developed using 

Pontryagin’s principle for optimal control theory. As standard outputs, DIDO produces 

the values of the Hamiltonian, the co-vectors, and even the KKT multipliers for the path 

constraints, in addition to the values of the system states. DIDO can solve these problem, 

when properly scaled, in minutes or even less. 
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2. Scaling and Balancing 

The key to using DIDO, other than ensuring the dynamics are properly coded, is 

to scale and balance the problem. Scaling can be applied allowing each of the states to 

have a custom unit applied to it that is more accommodating for the problem at hand. An 

example of properly scaling a problem would be if in X-axis you are traveling in km/s, 

while Y-axis you are traveling in m/s. if both axes are measured in km then change in the 

Y-axis may go unnoticed, or even uncalculated due to algorithmic tolerances. This can be 

a problem especially if that change in meters along the Y-axis is important to the problem 

at whole. This “problem” can be resolved by allowing the Y-axis to be measure in meters, 

while allowing the X-axis to be measure in kilometers. 

Scaling also affects DIDO because of the interactions of the co-vectors and the 

states. Initially, the range of values that the co-vectors could take are unknown, and to an 

extent so are the states. This could mean that a co-state could take on a value several 

times larger, or smaller, than that of the corresponding states. A significant difference 

means that small changes in either the state or co-state may not register and can be lost in 

DIDO. This can cause DIDO to take significantly longer to solve the problem, if it can 

even solve it all.  

To apply scaling to our problem first the relationship between the states and their 

scaling is established,  
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Where [ , , , , , ]e eX Z u w t  represent the scaled states and 

[ , , , , , ]XU ZU UU WU THU TU  represent to scaling used. Next the dynamics need to be 

scaled. Using 
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Provides the scaled dynamics. Applying the scaled states and dynamics to the problem, 
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At this point the complete process of determining the Hamiltonian, the adjoint 

equations, and transversality will be conducted again. While it is not necessary to show 

the process again, there is one aspect of note, and that is with the co-vectors,  . Recall 
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back in section IV.A.1.a that the co-vectors have the units of 
cost-unit

state-unit
 . When 

constructing the scaled Hamiltonian, the co-vectors then need to have the units of 

cost-unit

scaled-state-unit
,  . If proceeding similarly to the way the states were scaled, 

 c c losn NV    (eq. 78) 

 
state-unit

scaled-state-unit
scale

   (eq. 79) 

This resulting in 

 scale   .  (eq. 80) 

What this means that if the scaled state is smaller than the state then the scaled co-

state will be larger than the co-state, and vice-versa. This is the balance. The scales used 

for the states need to be picked in such a way that the states and co-states are close 

enough to each other that difference can be noticed. 

C. VALIDATION AND VERIFICATION 

After obtaining the optimal solution, the results need to be verified. First the 

control is propagated through the same dynamical model that was used to obtain the 

optimal control solution. The propagation test ensures that a converged DIDO solution 

employed a sufficient number of nodes. For the maximum range problem, only a small 

number of nodes was needed to obtain a useable solution and makes demonstrating the 

impact of having too few nodes difficult. Figure 13 and Figure 14 show the differences 

between a 20 nodes solution and a 120 node solution. Table 6 shows the difference in the 

final position of the propagated solutions as compared to the desired final position. For 

other problems these differences could be significant enough that the higher node 

solution is required. 
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Figure 13. Max Range Propagation with 20 Nodes 

 

Figure 14. Max Range Propagation with 120 Nodes 
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Table 6. Summary of Impact of Nodes on Propagation 

Number of Nodes Miss Distance (m) 

20 0.45 

120 0.02 

 

Another validation that was mentioned earlier was the value and dynamics of the 

co-state Xe , in that it should be at a constant value of -1. Figure 15 shows the values of 

values of the co-states, as determined by DIDO, and we can see that ( ) 1
eX ft    is 

obtained.  

 

Figure 15. Costates for the Maximum Range Solution 

D. SUMMARY 

In this chapter, the optimal control process was addressed; setting up the problem, 

finding the Lagrangian of the Hamiltonian, minimizing the problem, solving for the 

adjoints, and solving for the transversality requirements. The resulting boundary value 



 47 

problem was then solved using the solver known as DIDO, which introduced the concept 

of scaling and balancing. Finally, the results solution from DIDO was validated and 

verified by propagating the solution with the same dynamics used to obtain the optimal 

solution. In addition, the resulting costates were also cross checked with expected 

performance from the adjoints and transversality. The next chapter will then introduce the 

Proportional Navigation control laws and how they were implemented in the simulation. 
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V. PROPORTIONAL NAVIGATION 

Since the inception of the tactical missile guidance after World War II, 

proportional navigation has seen a significant research effort to improve its performance, 

mainly in defining the gains used. Much of this work has been summarized in 

Balakrishnan, et al. [2]. To provide a baseline for comparison, the basic concepts of 

proportional navigation as summarized by Zarchan [5] will be implemented as an 

example of a standard control method. 

A. CONTROL LAW DERIVATION 

 Figure 16 shows the basic geometry that will be used in the proportional 

navigation law. 

 

Figure 16. Missile-Target Engagement Geometry. Adapted from [5]. 

In Figure 16 los  is the line of sight between the missile and the target, TMR  is 

then range between the missile and target. MV  is the velocity of the missile, cn  is the 
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acceleration of the missile perpendicular to the line of sight, TV  is the velocity of the 

target, and Tn  is the acceleration of the target perpendicular to its velocity [5]. The 

guidance law is then stated as 

 
c c losn NV    (eq. 81) 

Where N is the effective navigation ratio, or the gain and cV  is the missile-target 

closing velocity, c TMV R  [5].  

If the coordinates of the missile are defined as 
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and the target as 
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then missile-target range can be defined as [5] 
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Using Figure 16 as a reference, the velocities of the missile are then defined as  
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 . (eq. 85) 

Similarly, the target velocities are 
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The relative velocities may then be computed,  
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Finally, the closing velocity is defined as [5] 
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It is possible to define the line of sight rate as [5] 
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However, this is only good for small angles approximation. In this simulation, Simulink’s 

capabilities were leveraged to calculate the line of sight angle rate for the control.  

Finally, the value of gain N is chosen to be a constant, usually between 3 and 5 

[5]. The output of the control law is then an acceleration perpendicular to the line of 

sight. Defining the line of sight as [5] 
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it is possible to convert the acceleration to the inertial frame as 
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This control is converted into a control useable by the model the dynamics defined in 

Chapter II, Section D, specifically where the acceleration in the inertial frame is defined 

as  
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Solving for  ,  
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Equation (eq. 93) provides a desired pitch, d , which allows for the sensed pitch to be 

feed back to the input, 

  dq k    ,  (eq. 94) 

where k is a proportional gain. 

With a useable control in for the model from the proportional navigation method, 

a test was conducted using the initial conditions obtained from maximum range problem 

and the derived range of 6478 m and 3N   and 1k  . For this test, and other future test, 

the target was assumed to be stationary. This first attempt at proportional navigation did 

not end in success, Figure 17 shows this result. 
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Figure 17. Simulation of Proportional Navigation with N = 3 and k =1 

After spending some time adjusting the value of the proportional gain, k, it was 

found that 0.2k   produced a workable solution, as seen in Figure 18. 
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Figure 18. Simulation of Proportional Navigation with N = 3 and k 

=0.2 

Figure 19 and Figure 20 show the accompanying line of sight and control for the 

simulation. 
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Figure 19. Line of Sight of Proportional Navigation with N = 3 and k 

= 0.2 

 

Figure 20. Control of Proportional Navigation with N = 3 and k = 0.2 

When 1k  the control law cannot effectively guide the missile until 6N  . The 

result can be seen in Figure 21 through Figure 23.  
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Figure 21. Simulation of Proportional Navigation with N = 6 and k = 1 

 

Figure 22. Line of Sight of Proportional Navigation with N = 6 and k 

= 1 
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Figure 23. Control of Proportional Navigation with N = 6 and k = 1 

B. SUMMARY 

This chapter covered the derivation of the basic proportional navigation control 

law. The developed control law was expanded to allow the control to be useable in the 

high-fidelity model. The final control law was then tested by using the initial conditions 

of the maximum range solution and the desired position to be at the maximum range. 

Manipulation of the control law gains and navigation ratio was needed to ensure that the 

control law was able to guide the missile into the desired point. This demonstrates some 

of the short comings of proportional navigation. The next chapter will implement the 

real-time optimal control and compare its performance to rudimentary proportional 

navigation performance. 
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VI. REAL-TIME OPTIMAL CONTROL 

The maximum range solution was obtained to determine the maximum distance 

the missile could travel. This information was needed because it was important to ensure 

that the bounds for future cost functions were not asking the missile to perform beyond 

its capabilities, and result in an unsolvable problem. For the minimum time and 

maximum energy cost functions a distance of 4318m, two thirds of the maximum range, 

was chosen to ensure that there was enough operating room to ensure that the missile 

could perform the desired task.  

A. MINIMUM TIME SOLUTION  

The minimum time cost function was solved first in order to provide a baseline 

for comparing the performance of the maximum energy solution. The final time and 

energy from the solution are the performance parameters of interest. Figure 24 through 

Figure 27 provide plots of the minimum time solution, and Table 7 provides a summary 

of the performance. 
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Figure 24. Minimum Time Solution: Path 

 

Figure 25. Minimum Time Solution: Control 
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Figure 26. Minimum Time Solution: Angles 

 

Figure 27. Minimum Time Solution: Energy 



 62 

Table 7. Summary of Minimum Time Solution Performance 

Final Time (s) 6.04 

Final Kinetic Energy (MJ) 8.24 

 

B. MAXIMUM ENERGY SOLUTION 

With the baseline obtained from the minimum time solution, the maximum energy 

solution is obtained. Figure 28 through Figure 31 provide plots of the maximum energy 

solution and Table 8 provides a summary of the performance. 

 

Figure 28. Maximum Energy Solution: Path 



 63 

 

Figure 29. Maximum Energy Solution: Control 

 

Figure 30. Maximum Energy Solution: Angles 
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Figure 31. Maximum Energy Solution: Energy 

Table 8. Summary of Maximum Energy Performance 

Final Time (s) 6.05 

Final Kinetic Energy (MJ) 8.26 

 

Immediately when looking at Figure 24 and Figure 28, it can be seen that the 

results are not that dissimilar. Comparing the optimal controls, as seen in Figure 32, they 

nearly identical. 
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Figure 32. Comparison of Maximum Energy and Minimum Time 

Optimal Control 

Looking at the performance of the minimum time and maximum energy solutions, 

their final times and kinetic energy are less than 0.3% different from each other, the two 

solutions are equivalent. This may be a result of the axial coefficient, CA, being held at a 

constant for the low-fidelity model. 

 

C. REAL-TIME OPTIMAL CONTROL 

With the maximum energy solution obtained, the optimal control, from the low-

fidelity model, is then simulated using the high-fidelity model. To establish a baseline of 

comparison, an open loop run is conducted employing the control history obtained from 

the low fidelity model. Before the simulation is performed, it is important to note that the 

final time is expected to be greater than the solution and the final kinetic energy is 

expected to be less. This is because of the difference between the low-fidelity and high-

fidelity models, mainly the axial drag coefficient (CA). CA was held at a constant in the 
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low-fidelity model, but was allowed to change in the high-fidelity model. The results of 

the open loop can be seen in Figure 33. 

 

Figure 33. Open Loop Propagation Using the Optimal Solution: Path 

As it can be seen in Figure 33, the high-fidelity model is unable to follow the 

desired trajectory in the open loop. The propagation misses the target by about 83 m. In 

addition, as mentioned earlier, the final time ended up being 6.316 seconds while the 

final kinetic energy was 6.12 MJ.  

With the baseline obtained from the open loop propagation, testing the RTOC is 

the next phase. The RTOC is implemented by allowing the model to be initially 

simulated using the optimal solution obtained from the maximum energy problem. 

However, the model is only allowed to propagate for a fraction of the total time of the 

maximum energy solution. The amount of time that the model is allowed to propagate 

here is known as the step time. When the propagation completes, the final states of the 

model are used as initial conditions to resolve the maximum energy problem. The 

propagation of the model then continues from its last point using the new optimal control 
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solution. The process is repeated a set amount of times. Once the last optimal solution is 

obtained, the RTOC enters what is known as “blind time” where the model must trust that 

final solution will guide the missile the rest of the way in.  

Various step times were chosen by taking the total time from the maximum 

energy optimal solution and breaking it into even segments. The results from the different 

steps times can be seen in Table 9. 

Table 9. Summary of RTOC Performance for Various Step Sizes  

Segments Step Time (s) Final Time (s) Final Energy (MJ) Miss Distance (m) 

5 1.21 6.4 6.1 12.39 

10 0.61 6.4 6.1 3.52 

15 0.40 6.4 6.1 1.54 

20 0.30 6.4 6.1 1.42 

25 0.24 6.4 6.1 1.62 

30 0.20 6.4 6.1 0.94 

 

One thing to note is that increasing the numbers of steps used in by RTOC does not 

appear to have a significant impact on the final energy. This is most likely a result of the 

missile not deviating from the optimal path significantly during its initial propagation 

with the high-fidelity model. 

Figure 34 and Figure 35 show RTOC implemented with a time step of 0.30 

seconds. They demonstrate how the missile can easily follow the optimal solution with 

the aid of RTOC. We can see from Figure 36 the system compensates for the 

discrepancies in the models. Table 10 then summarizes the RTOC and open loop 

performances. 
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Figure 34. RTOC Propagation Using Optimal Solution: Path 

 

Figure 35. RTOC Propagation Using Optimal Solution: Velocity 
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Figure 36. RTOC Propagation Using the Optimal Solution: Control 

Table 10. Summary of Propagation Performance 

 
Final Time 

(sec) 

Final Kinetic 

 Energy (MJ) 
Miss Distance (m) 

Optimal 

Solution 
6.0 8.3 N/A 

Open-Loop 6.3 6.1 83.2 

RTOC: 

0.302t   
6.4 6.1 1.4 

 

Referring to Table 10 we can see that the RTOC method reduces the miss distance 

to almost 1/60th of the open loop distance, while only sacrificing less than 1% of the final 

kinetic energy. 

As mentioned in chapter V, a proportional navigation control was implemented as 

an alternative method for comparison purposes. Figure 37 shows the trajectory that the 
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proportional navigation and the RTOC took and how they compare. Table 11 then 

compares the resulting times and kinetic energies. 

 

Figure 37. Plot of RTOC and Proportional Navigation Performance 

Table 11. Comparison of RTOC and Proportional Navigation 

 
Final Time 

(sec) 

Final Kinetic 

 Energy (MJ) 
Miss Distance (m) 

RTOC: 

0.302t   
6.4 6.1 1.42 

Proportional 

Navigation (N3) 
6.6 5.4 0 

Proportional 

Navigation (N6) 
6.4 5.81 0 

 

D. SUMMARY 

In this chapter the minimum time and maximum energy optimal solutions were 

obtained using a reduced range obtained from the maximum range optimal solution. The 
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optimal solution for the minimum time and maximum energy problems were found to be 

equivalent, possibly due to the constant CA. An open loop propagation of the maximum 

energy problem was then obtained as a baseline for comparing the performance of the 

RTOC. The RTOC was then performed using different time steps to compare the impact 

on performance by allowing the optimal solution to be computed more often. Finally, 

with a time of 0.30 seconds, the results were then compared to the proportional 

navigation control law for a navigation ratio of three and six. 

  



 72 

THIS PAGE INTENTIONALLY LEFT BLANK  



 73 

VII. CONCLUSIONS 

This thesis set out to demonstrate an alternative method for developing the control 

of a tactical missile with the intent on improving the conservation of kinetic energy 

throughout the mid-course flight. The dynamics for the three degree of freedom (3DOF) 

model used was first established in chapter II. After deriving the dynamics, chapter III set 

out to provide a means of estimating the aerodynamic coefficients of a missile when 

aerodynamic data is not readily available. Chapter IV then introduced the concept of 

optimal control theory and, as an example, went through the process of applying it the 

maximum range problem. Chapter IV then discussed the concepts of scaling and 

balancing for proper use DIDO in solving a boundary value problem. The basic 

proportional navigation control law and how it was applied to 3DOF model was then 

introduced in chapter V. Chapter VI then applied real-time optimal control (RTOC) 

feedback loop to the maximum energy problem to compare against proportional 

navigation.  

The first takeaway of this thesis is that it is theoretically possible to use RTOC to 

guide a missile to a desired point while using only a low-fidelity dynamics model to 

calculate the optimal control. The RTOC was also able to accomplish this using a 

relatively low update rate (approximately 3 Hz). 

 The next major takeaway is the performance comparison of RTOC with the 

proportional navigation control law: RTOC had superior performance in terms of final 

flight time and kinetic energy compared to the standard proportional navigation. RTOC 

was showed to conserve more energy, 4.5% – 12.6%. However, this comparison does not 

consider current proportional navigation methods such as gain scheduling or machine 

learning that could potential close performance gap.  

The optimal solution derived from Pontryagin’s principle on optimal control 

ultimately depends on the accuracy of the dynamics used to derive the boundary value 

problem. Any difference between the optimal control model and the behavior of the real 

system could potentially have a significant impact on performance of the control when 
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applied to the higher-fidelity model. In the end, though, it can be said that the RTOC 

method does show that it is more than capable of solving the tactical missile control 

problem. 

Future work on investigating the potentials for the RTOC method would include 

using higher-fidelity models to develop the boundary value problems. One such method 

would be to develop best fit curves to represent the aerodynamic coefficients. Another 

area would be to employ fin deflection,  , as the control input. This level of control 

would go beyond that which proportional navigation is capable of, and the degree of 

model fidelity required for practical problems could be established. In addition, more 

research should be conducted on using RTOC to guide a tactical missile against a moving 

target. 
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